de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Efficiently Handling Dynamics in Distributed Link Based Authority Analysis

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45166

Xavier Parreira,  Josiane
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45041

Michel,  Sebastian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Xavier Parreira, J., Michel, S., & Weikum, G. (2008). Efficiently Handling Dynamics in Distributed Link Based Authority Analysis. In J. Bailey, D. Maier, K.-D. Schewe, B. Thalheim, & X. S. Wang (Eds.), Web Information Systems Engineering – WISE 2008: 9th International Conference (pp. 36-49). Berlin: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1B7F-8
Zusammenfassung
Link based authority analysis is an important tool for ranking resources in social networks and other graphs. Previous work have presented JXP, a decentralized algorithm for computing PageRank scores. The algorithm is designed to work in distributed systems, such as peer-to-peer (P2P) networks. However, the dynamics of the P2P networks, one if its main characteristics, is currently not handled by the algorithm. This paper shows how to adapt JXP to work under network churn. First, we present a distributed algorithm that estimates the number of distinct documents in the network, which is needed in the local computation of the PageRank scores. We then present a method that enables each peer to detect other peers leave and to update its view of the network. We show that the number of stored items in the network can be efficiently estimated, with little overhead on the network traffic. Second, we present an extension of the original JXP algorithms that can cope with network and content dynamics. We show by a comprehensive performance analysis the practical usability of our approach. The proposed estimators together with the changes in the core JXP components allow for a fast and authority score computation even under heavy churn. We believe that this is the last missing step toward the application of distributed PageRank measures in real-life large-scale applications.