de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dynamic Range Independent Image Quality Assessment

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44048

Aydin,  Tunc Ozan
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44986

Mantiuk,  Rafał
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45095

Myszkowski,  Karol
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Aydin, T. O., Mantiuk, R., Myszkowski, K., & Seidel, H.-P. (2008). Dynamic Range Independent Image Quality Assessment. ACM Transactions on Graphics, 27(3): 69, pp. 1-10. doi:10.1145/1360612.1360668.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1B77-7
Zusammenfassung
The diversity of display technologies and introduction of high dynamic range imagery introduces the necessity of comparing images of radically different dynamic ranges. Current quality assessment metrics are not suitable for this task, as they assume that both reference and test images have the same dynamic range. Image fidelity measures employed by a majority of current metrics, based on the difference of pixel intensity or contrast values between test and reference images, result in meaningless predictions if this assumption does not hold. We present a novel image quality metric capable of operating on an image pair where both images have arbitrary dynamic ranges. Our metric utilizes a model of the human visual system, and its central idea is a new definition of visible distortion based on the detection and classification of visible changes in the image structure. Our metric is carefully calibrated and its performance is validated through perceptual experiments. We demonstrate possible applications of our metric to the evaluation of direct and inverse tone mapping operators as well as the analysis of the image appearance on displays with various characteristics.