de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Drift-free Tracking of Rigid and Articulated Objects

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44472

Gall,  Jürgen
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45312

Rosenhahn,  Bodo
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gall, J., Rosenhahn, B., & Seidel, H.-P. (2008). Drift-free Tracking of Rigid and Articulated Objects. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008) (pp. 1-8). Los Alamitos, Ca.: IEEE Computer Society.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1B73-F
Zusammenfassung
Model-based 3D tracker estimate the position, rotation, and joint angles of a given model from video data of one or multiple cameras. They often rely on image features that are tracked over time but the accumulation of small errors results in a drift away from the target object. In this work, we address the drift problem for the challenging task of human motion capture and tracking in the presence of multiple moving objects where the error accumulation becomes even more problematic due to occlusions. To this end, we propose an analysis-by-synthesis framework for articulated models. It combines the complementary concepts of patch-based and region-based matching to track both structured and homogeneous body parts. The performance of our method is demonstrated for rigid bodies, body parts, and full human bodies where the sequences contain fast movements, self-occlusions, multiple moving objects, and clutter. We also provide a quantitative error analysis and comparison with other model-based approaches.