de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Analysis and Interpretation of Visual Hierarchical Heavy Hitters of Binary Relations

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45016

Mazeika,  Arturas
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mazeika, A., Boehlen, M. H., & Trivellato, D. (2008). Analysis and Interpretation of Visual Hierarchical Heavy Hitters of Binary Relations. In P. Atzeni, A. Caplinskas, & H. Jaakkola (Eds.), Advances in Databases and Information Systems, 12th East European Conference, ADBIS 2008 (pp. 168-183). Berlin: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1AD9-6
Zusammenfassung
The emerging field of visual analytics changes the way we model, gather, and analyze data. Current data analysis approaches suggest to gather as much data as possible and then focus on goal and process oriented data analysis techniques. Visual analytics changes this approach and the methodology to interpret the results becomes the key issue. This paper contributes with a method to interpret visual hierarchical heavy hitters (VHHHs). We show how to analyze data on the general level and how to examine specific areas of the data. We identify five common patterns that build the interpretation alphabet of VHHHs. We demonstrate our method on three different real world datasets and show the effectiveness of our approach