de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Micro-Rendering for Scalable, Parallel Final Gathering

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45298

Ritschel,  Tobias
Computer Graphics, MPI for Informatics, Max Planck Society;

Engelhardt,  Thomas
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44531

Grosch,  Thorsten
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44747

Kautz,  Jan
Computer Graphics, MPI for Informatics, Max Planck Society;

Dachsbacher,  Carsten
Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.-P., Kautz, J., & Dachsbacher, C. (2009). Micro-Rendering for Scalable, Parallel Final Gathering. In ACM Transactions on Graphics (Proceedings SIGGRAPH Asia 2009). New York: ACM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-19BD-C
Zusammenfassung
Recent approaches to global illumination for dynamic scenes achieve interactive frame rates by using coarse approximations to geometry, lighting, or both, which limits scene complexity and rendering quality. High-quality global illumination renderings of complex scenes are still limited to methods based on ray tracing. While conceptually simple, these techniques are computationally expensive. We present an efficient and scalable method to compute global illumination solutions at interactive rates for complex and dynamic scenes. Our method is based on parallel final gathering running entirely on the GPU. At each final gathering location we perform micro-rendering: we traverse and rasterize a hierarchical point-based scene representation into an importance-warped micro-buffer, which allows for BRDF importance sampling. The final reflected radiance is computed at each gathering location using the micro-buffers and is then stored in image-space. We can trade quality for speed by reducing the sampling rate of the gathering locations in conjunction with bilateral upsampling. We demonstrate the applicability of our method to interactive global illumination, the simulation of multiple indirect bounces, and to final gathering from photon maps.