Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Journal Article

Statistical Structures for Internet-scale Data Management


Triantafillou,  Peter
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Ntarmos, N., Triantafillou, P., & Weikum, G. (2009). Statistical Structures for Internet-scale Data Management. The VLDB Journal, 18. doi:10.1007/s00778-009-0140-7.

Cite as:
Efficient query processing in traditional database management systems relies on statistics on base data. For centralized systems, there is a rich body of research results on such statistics, from simple aggregates to more elaborate synopses such as sketches and histograms. For Internet-scale distributed systems, on the other hand, statistics management still poses major challenges. With the work in this paper we aim to endow peer-to-peer data management over structured overlays with the power associated with such statistical information, with emphasis on meeting the scalability challenge. To this end, we first contribute efficient, accurate, and decentralized algorithms that can compute key aggregates such as Count, CountDistinct, Sum, and Average. We show how to construct several types of histograms, such as simple Equi-Width, Average-Shifted Equi-Width, and Equi-Depth histograms. We present a full-fledged open-source implementation of these tools for distributed statistical synopses, and report on a comprehensive experimental performance evaluation, evaluating our contributions in terms of efficiency, accuracy, and scalability