de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Database and Information-retrieval Methods for Knowledge Discovery

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44738

Kasneci,  Gjergji
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45248

Ramanath,  Maya
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45572

Suchanek,  Fabian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Weikum, G., Kasneci, G., Ramanath, M., & Suchanek, F. (2009). Database and Information-retrieval Methods for Knowledge Discovery. Communications of the ACM, 52(1), 56-64. Retrieved from http://www.mpi-inf.mpg.de/~suchanek/publications/cacm2008.pdf.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1904-C
Zusammenfassung
Our aim here is to advocate for the integration of database-systems (DB) methods and information-retrieval (IR) methods to address applications that are emerging from the ongoing explosion and diversification of digital information. One grand goal of such an endeavor is the automatic building and maintenance of a comprehensive knowledge base of facts from encyclopedic sources and the scientific literature. Facts should be represented in terms of typed entities and relationships and allow expressive queries that return ranked results with precision in an efficient and scalable manner. We thus explore how DB and IR methods might contribute toward this ambitious goal.