de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

An efficient algorithm for the stratification and triangulation of an algebraic surface

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44118

Berberich,  Eric
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44759

Kerber,  Michael
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45332

Sagraloff,  Michael
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Berberich, E., Kerber, M., & Sagraloff, M. (2010). An efficient algorithm for the stratification and triangulation of an algebraic surface. Computational Geometry: Theory and Applications, 43(3), 257-278. doi:10.1016/j.comgeo.2009.01.009.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1805-1
Zusammenfassung
We present a method to compute the exact topology of a real algebraic surface $S$, implicitly given by a polynomial $f\in\mathbb{Q}[x,y,z]$ of arbitrary total degree~$N$. Additionally, our analysis provides geometric information as it supports the computation of arbitrary precise samples of $S$ including critical points. We compute a stratification $\Omega_S$ of $S$ into $O(N^5)$ nonsingular cells, including the complete adjacency information between these cells. This is done by a projection approach. We construct a special planar arrangement $\mathcal{A}_S$ with fewer cells than a cad in the projection plane. Furthermore, our approach applies numerical and combinatorial methods to minimize costly symbolic computations. The algorithm handles all sorts of degeneracies without transforming the surface into a generic position. Based on $\Omega_S$ we also compute a simplicial complex which is isotopic to~$S$. A complete C++-implementation of the stratification algorithm is presented. It shows good performance for many well-known examples from algebraic geometry.