Hilfe Wegweiser Impressum Kontakt Einloggen





Automatic Discovery of Meaningful Object Parts with Latent CRFs


Schiele,  Bernt
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Schnitzspan, P., Roth, S., & Schiele, B. (2010). Automatic Discovery of Meaningful Object Parts with Latent CRFs. In 2010 IEEE Conference on Computer Vision and Pattern Recognition (pp. 121-128). Piscataway, NJ: IEEE. doi:10.1109/CVPR.2010.5540220.

Object recognition is challenging due to high intra-class variability caused, e.g., by articulation, viewpoint changes, and partial occlusion. Successful methods need to strike a balance between being flexible enough to model such variation and discriminative enough to detect objects in cluttered, real world scenes. Motivated by these challenges we propose a latent conditional random field (CRF) based on a flexible assembly of parts. By modeling part labels as hidden nodes and developing an EM algorithm for learning from class labels alone, this new approach enables the automatic discovery of semantically meaningful object part representations. To increase the flexibility and expressiveness of the model, we learn the pairwise structure of the underlying graphical model at the level of object part interactions. Efficient gradient-based techniques are used to estimate the structure of the domain of interest and carried forward to the multi-label or object part case. Our experiments illustrate the meaningfulness of the discovered parts and demonstrate state-of-the-art performance of the approach.