de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Towards Optimal Alignment of Protein Structure Distance Matrices

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44341

Domingues,  Francisco S.
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44788

Klau,  Gunnar W.
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wohlers, I., Domingues, F. S., & Klau, G. W. (2010). Towards Optimal Alignment of Protein Structure Distance Matrices. Bioinformatics, 26(18), 2273-2280. doi:10.1093/bioinformatics/btq420.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-15AE-0
Zusammenfassung
MOTIVATION: Structural alignments of proteins are important for identification of structural similarities, homology detection and functional annotation. The structural alignment problem is well studied and computationally difficult. Many different scoring schemes for structural similarity as well as many algorithms for finding high-scoring alignments have been proposed. Algorithms using contact map overlap (CMO) as scoring function are currently the only practical algorithms able to compute provably optimal alignments. RESULTS: We propose a new mathematical model for the alignment of inter-residue distance matrices, building upon previous work on maximum CMO. Our model includes all elements needed to emulate various scoring schemes for the alignment of protein distance matrices. The algorithm that we use to compute alignments is practical only for sparse distance matrices. Therefore, we propose a more effective scoring function, which uses a distance threshold and only positive structural scores. We show that even under these restrictions our approach is in terms of alignment accuracy competitive with state-of-the-art structural alignment algorithms, whereas it additionally either proves the optimality of an alignment or returns bounds on the optimal score. Our novel method is freely available and constitutes an important promising step towards truly provably optimal structural alignments of proteins. AVAILABILITY: An executable of our program PAUL is available at http://planet-lisa.net/.