de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Symmetry Detection in Images Using Belief Propagation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44696

Jansen,  Silke
Computer Graphics, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45695

Wand,  Michael
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jansen, S. (2010). Symmetry Detection in Images Using Belief Propagation. Master Thesis, Universität des Saarlandes, Saarbrücken.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-145F-8
Zusammenfassung
In this thesis a general approach for detection of symmetric structures in images is presented. Rather than relying on some feature points to extract symmetries, symmetries are described using a probabilistic formulation of image self-similarity. Using a Markov random field we obtain a joint probability distribution describing all assignments of the image to itself. Due to the high dimensionality of this joint distribution, we do not examine this distribution directly, but approximate its marginals in order to gather information about the symmetries with the image. In the case of perfect symmetries this approximation is done using belief propagation. A novel variant of belief propagation is introduced allowing for reliable approximations when dealing with approximate symmetries. We apply our approach to several images ranging from perfect synthetic symmetries to real-world scenarios, demonstrating the capabilities of probabilistic frameworks for symmetry detection.