de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High accuracy binary black hole simulations with an extended wave zone

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons20666

Pollney,  Denis
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons20669

Reisswig,  Christian
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons20656

Dorband,  Nils
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

0910.3803.pdf
(Preprint), 3MB

PRD83_044045.pdf
(beliebiger Volltext), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pollney, D., Reisswig, C., Schnetter, E., Dorband, N., & Diener, P. (2011). High accuracy binary black hole simulations with an extended wave zone. Physical Review D, 83(4): 044045. doi:10.1103/PhysRevD.83.044045.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-104E-3
Zusammenfassung
We present results from a new code for binary black hole evolutions using the moving-puncture approach, implementing finite differences in generalised coordinates, and allowing the spacetime to be covered with multiple communicating non-singular coordinate patches. Here we consider a regular Cartesian near zone, with adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally disconnected from the measurement. For the well-studied test-case of the inspiral of an equal-mass non-spinning binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated to $r\to\infty$ throughout the simulation, including the merger and ringdown. Ringdown frequencies for these modes (to $(\ell,m)=(6,6)$) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant settles to a Kerr black hole with irreducible mass $M_{\rm irr} = 0.884355\pm20\times10^{-6}$ and spin $S_f/M_f^2 = 0.686923 \pm 10\times10^{-6}$