de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Properties of Quantum Graphity at Low Temperature

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons41566

Markopoulou,  Fotini
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1008.1340.pdf
(Preprint), 392KB

PRD84_024002.pdf
(beliebiger Volltext), 460KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Caravelli, F., & Markopoulou, F. (2011). Properties of Quantum Graphity at Low Temperature. Physical Review D, 84(2): 024002. doi:10.1103/PhysRevD.84.024002.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-0705-8
Zusammenfassung
We present a mapping of dynamical graphs and, in particular, the graphs used in the Quantum Graphity models for emergent geometry, into an Ising hamiltonian on the line graph of a complete graph with a fixed number of vertices. We use this method to study the properties of Quantum Graphity models at low temperature in the limit in which the valence coupling constant of the model is much greater than the coupling constants of the loop terms. Using mean field theory we find that an order parameter for the model is the average valence of the graph. We calculate the equilibrium distribution for the valence as an implicit function of the temperature. In the approximation in which the temperature is low, we find the first two Taylor coefficients of the valence in the temperature expansion. A discussion of the susceptibility function and a generalization of the model are given in the end.