Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity

MPG-Autoren
/persons/resource/persons40449

Friedrich,  Daniel
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4336

Hild,  Stefan
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40433

Britzger,  Michael
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons1466

Strain,  Ken A.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1104.2780
(Preprint), 2MB

OptEx19_14995.pdf
(beliebiger Volltext), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Friedrich, D., Barr, B. W., Brückner, F., Hild, S., Nelson, J., Mcarthur, J., et al. (2011). Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity. Optics Express, 19(16), 14955-14963. doi:10.1364/OE.19.014955.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-051E-8
Zusammenfassung
We report on the first demonstration of a fully suspended 10m Fabry-Perot
cavity incorporating a waveguide grating as the coupling mirror. The cavity was
kept on resonance by reading out the length fluctuations via the
Pound-Drever-Hall method and employing feedback to the laser frequency. From
the achieved finesse of 790 the grating reflectivity was determined to exceed
99.2% at the laser wavelength of 1064\,nm, which is in good agreement with
rigorous simulations. Our waveguide grating design was based on tantala and
fused silica and included a ~20nm thin etch stop layer made of Al2O3 that
allowed us to define the grating depth accurately during the fabrication
process. Demonstrating stable operation of a waveguide grating featuring high
reflectivity in a suspended low-noise cavity, our work paves the way for the
potential application of waveguide gratings as mirrors in high-precision
interferometry, for instance in future gravitational wave observatories.