English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamical Surface Gravity in Spherically Symmetric Black Hole Formation

MPS-Authors
/persons/resource/persons26313

Nielsen,  Alex B.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1103.0750
(Preprint), 468KB

PRD84_104008.pdf
(Any fulltext), 544KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Pielahn, M., Kunstatter, G., & Nielsen, A. B. (2011). Dynamical Surface Gravity in Spherically Symmetric Black Hole Formation. Physical Review D, 84(10): 104008. doi:10.1103/PhysRevD.84.104008.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-0165-6
Abstract
We study dynamical surface gravity in a general spherically symmetric setting using Painlev\'{e}-Gullstrand (PG) coordinates. Our analysis includes several definitions that have been proposed in the past as well as two new definitions adapted to PG coordinates. Various properties are considered, including general covariance, value at extremality, locality and static limit. We illustrate with specific examples of "dirty" black holes that even for spacetimes possessing a global timelike Killing vector, local definitions of surface gravity can differ substantially from "non-local" ones that require an asymptotic normalization condition. Finally, we present numerical calculations of dynamical surface gravity for black hole formation via spherically symmetric scalar field collapse. Our results highlight the differences between the various definitions in a dynamical setting and provide further insight into the distinction between local and non-local definitions of surface gravity.