Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dissipative Optomechanics in a Michelson-Sagnac Interferometer

MPG-Autoren
/persons/resource/persons45876

Xuereb,  Andre
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Hammerer,  Klemens
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1107.4908
(Preprint), 591KB

PRL107_213604.pdf
(beliebiger Volltext), 496KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Xuereb, A., Schnabel, R., & Hammerer, K. (2011). Dissipative Optomechanics in a Michelson-Sagnac Interferometer. Physical Review Letters, 107(21): 213604. doi:10.1103/PhysRevLett.107.213604.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-014E-B
Zusammenfassung
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson--Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong and tunable dissipative coupling opens up a new route towards observation of fundamental optomechanical effects such as ponderomotive squeezing or nonlinear dynamics. Beyond optomechanics, the method suggested here can be readily transferred to other setups involving such systems as nonlinear media, atomic ensembles, or single atoms.