Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Estimating the parameters of non-spinning binary black holes using ground-based gravitational-wave detectors: Statistical errors

MPG-Autoren
/persons/resource/persons40522

Bose,  Sukanta
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

0901.4936
(Preprint), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ajith, P., & Bose, S. (2009). Estimating the parameters of non-spinning binary black holes using ground-based gravitational-wave detectors: Statistical errors. Physical Review D., 79: 084032. doi:10.1103/PhysRevD.79.084032.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0012-9C8D-5
Zusammenfassung
(Abridged): We assess the statistical errors in estimating the parameters of non-spinning black-hole binaries using ground-based gravitational-wave detectors. While past assessments were based on only the inspiral/ring-down pieces of the coalescence signal, the recent progress in analytical and numerical relativity enables us to make more accurate projections using "complete" inspiral-merger-ringdown waveforms. We employ the Fisher matrix formalism to estimate how accurately the source parameters will be measurable using a single interferometer as well as a network of interferometers. Those estimates are further vetted by Monte-Carlo simulations. We find that the parameter accuracies of the complete waveform are, in general, significantly better than those of just the inspiral waveform in the case of binaries with total mass M > 20 M_sun. For the case of the Advanced LIGO detector, parameter estimation is the most accurate in the M=100-200 M_sun range. For an M=100M_sun system, the errors in measuring the total mass and the symmetric mass-ratio are reduced by an order of magnitude or more compared to inspiral waveforms. For binaries located at a luminosity distance d_L and observed with the Advanced LIGO--Advanced Virgo network, the sky-position error varies widely across the sky: For M=100M_sun systems at d_L=1Gpc, this variation ranges from ~0.01 square-degrees to one square-degree, with an average value of ~0.1 square-degrees. This is more than forty times better than the average sky-position accuracy of inspiral waveforms at this mass-range. The error in estimating d_L is dominated by the error in measuring the wave's polarization and is ~43% for low-mass binaries and ~23% for high-mass binaries located at d_L=1Gpc.