English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Born--Oppenheimer decomposition for quantum fields on quantum spacetimes

MPS-Authors
/persons/resource/persons2681

Tambornino,  Johannes
Quantum Gravity and Unified Theories, AEI Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20719

Thiemann,  Thomas
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

0911.5331
(Preprint), 571KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Giesel, K., Tambornino, J., & Thiemann, T. (in preparation). Born--Oppenheimer decomposition for quantum fields on quantum spacetimes.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-9B69-E
Abstract
Quantum Field Theory on Curved Spacetime (QFT on CS) is a well established theoretical framework which intuitively should be a an extremely effective description of the quantum nature of matter when propagating on a given background spacetime. If one wants to take care of backreaction effects, then a theory of quantum gravity is needed. It is now widely believed that such a theory should be formulated in a non-perturbative and therefore background independent fashion. Hence, it is a priori a puzzle how a background dependent QFT on CS should emerge as a semiclassical limit out of a background independent quantum gravity theory. In this article we point out that the Born-Oppenheimer decomposition (BOD) of the Hilbert space is ideally suited in order to establish such a link, provided that the Hilbert space representation of the gravitational field algebra satisfies an important condition. If the condition is satisfied, then the framework of QFT on CS can be, in a certain sense, embedded into a theory of quantum gravity. The unique representation of the holonomy-flux algebra underlying Loop Quantum Gravity (LQG) violates that condition. While it is conceivable that the condition on the representation can be relaxed, for convenience in this article we consider a new classical gravitational field algebra and a Hilbert space representation of its restriction to an algebraic graph for which the condition is satisfied. An important question that remains and for which we have only partial answers is how to construct eigenstates of the full gravity-matter Hamiltonian whose BOD is confined to a small neighbourhood of a physically interesting vacuum spacetime.