Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Lagrangian theory of structure formation in relativistic cosmology. IV. Lagrangian approach to gravitational waves

MPG-Autoren
/persons/resource/persons101427

Wiegand,  Alexander
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1711.01597.pdf
(Preprint), 369KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Roumi, F. A., Buchert, T., & Wiegand, A. (2017). Lagrangian theory of structure formation in relativistic cosmology. IV. Lagrangian approach to gravitational waves. Physical Review D, 96: 123538. doi:10.1103/PhysRevD.96.123538.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-3DB0-5
Zusammenfassung
The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In previous works, the perturbation and solution schemes that are generated by the spatially projected gravitoelectric part of the Weyl tensor were given to any order of the perturbations, together with extensions and applications for accessing the nonperturbative regime. We here discuss more in detail the general first-order scheme within the Cartan formalism including and concentrating on the gravitational wave propagation in matter. We provide master equations for all parts of Lagrangian-linearized perturbations propagating in the perturbed spacetime, and we outline the solution procedure that allows one to find general solutions. Particular emphasis is given to global properties of the Lagrangian perturbation fields by employing results of Hodge-de Rham theory. We here discuss how the Hodge decomposition relates to the standard scalar-vector-tensor decomposition. Finally, we demonstrate that we obtain the known linear perturbation solutions of the standard relativistic perturbation scheme by performing two steps: first, by restricting our solutions to perturbations that propagate on a flat unperturbed background spacetime and, second, by transforming to Eulerian background coordinates with truncation of nonlinear terms.