English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Testing general relativity using golden black-hole binaries

MPS-Authors
/persons/resource/persons26313

Nielsen,  Alex B.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1602.02453.pdf
(Preprint), 626KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ghosh, A., Ghosh, A., Johnson-McDaniel, N. K., Mishra, C. K., Ajith, P., Del Pozzo, W., et al. (2016). Testing general relativity using golden black-hole binaries. Physical Review D, 94: 021101. doi:10.1103/PhysRevD.94.021101.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-75DA-8
Abstract
The coalescences of stellar-mass black-hole binaries through their inspiral, merger, and ringdown are among the most promising sources for ground-based gravitational-wave (GW) detectors. If a GW signal is observed with sufficient signal-to-noise ratio, the masses and spins of the black holes can be estimated from just the inspiral part of the signal. Using these estimates of the initial parameters of the binary, the mass and spin of the final black hole can be uniquely predicted making use of general-relativistic numerical simulations. In addition, the mass and spin of the final black hole can be independently estimated from the merger--ringdown part of the signal. If the binary black hole dynamics is correctly described by general relativity (GR), these independent estimates have to be consistent with each other. We present a Bayesian implementation of such a test of general relativity, which allows us to combine the constraints from multiple observations. Using kludge modified GR waveforms, we demonstrate that this test can detect sufficiently large deviations from GR, and outline the expected constraints from upcoming GW observations using the second-generation of ground-based GW detectors.