English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Implementing a search for gravitational waves from binary black holes with nonprecessing spin

MPS-Authors
/persons/resource/persons192149

Capano,  Collin
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons145567

Harry,  Ian
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192113

Privitera,  Stephen
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons127862

Buonanno,  Alessandra
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1602.03509.pdf
(Preprint), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Capano, C., Harry, I., Privitera, S., & Buonanno, A. (2016). Implementing a search for gravitational waves from binary black holes with nonprecessing spin. Physical Review D, 93: 124007. doi:http://dx.doi.org/10.1103/PhysRevD.93.124007.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-1834-6
Abstract
Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms --- a template bank --- chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins $\chi_{1,2}\in [-0.99, 0.99]$ aligned with the orbital angular momentum, component masses $m_{1,2}\in [2, 48]\,\mathrm{M}_\odot$, and total mass $M_\mathrm{total} \leq 50\,\mathrm{M}_\odot$. Using effective-one-body waveforms with spin effects, we show that less than $3\%$ of the maximum signal-to-noise ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early advanced LIGO noise curve. We use simulated advanced LIGO noise to compare the sensitivity of this bank to a non-spinning bank covering the same parameter space. In doing so, we consider the competing effects between improved SNR and signal-based vetoes, and the increase in the rate of false alarms of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin bank can be a factor of $1.3$ -- $5$ more sensitive than a non-spinning bank to BBHs with dimensionless spins $> +0.6$ and component masses $\gtrsim 20\,\mathrm{M}_\odot$, and even larger gains for systems with equally high spins but smaller component masses.