Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Numerical and analytical methods for asymptotically flat spacetimes

MPG-Autoren
/persons/resource/persons80688

Rinne,  Oliver
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1407.7407.pdf
(Preprint), 468KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rinne, O. (2014). Numerical and analytical methods for asymptotically flat spacetimes. Habilitation Thesis. Retrieved from http://arxiv.org/abs/1407.7407.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-2781-D
Zusammenfassung
This article begins with a brief introduction to numerical relativity aimed at readers who have a background in applied mathematics but not necessarily in general relativity. I then introduce and summarise my work on the problem of treating asymptotically flat spacetimes of infinite extent with finite computational resources. Two different approaches are considered. The first approach is the standard one and is based on evolution on Cauchy hypersurfaces with artificial timelike boundary. The well posedness of a set of constraint-preserving boundary conditions for the Einstein equations in generalised harmonic gauge is analysed, their numerical performance is compared with various alternate methods, and improved absorbing boundary conditions are constructed and implemented. In the second approach, one solves the Einstein equations on hyperboloidal (asymptotically characteristic) hypersurfaces. These are conformally compactified towards future null infinity, where gravitational radiation is defined in an unambiguous way. We show how the formally singular terms arising in a $3+1$ reduction of the equations can be evaluated at future null infinity, present stable numerical evolutions of vacuum axisymmetric black hole spacetimes and study late-time power-law tails of matter fields in spherical symmetry.