English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Migration of massive black hole binaries in self-gravitating accretion discs: Retrograde versus prograde

MPS-Authors
/persons/resource/persons37539

Roedig,  Constanze
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons2713

Sesana,  Alberto
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1307.6283.pdf
(Preprint), 818KB

3476.full.pdf
(Any fulltext), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Roedig, C., & Sesana, A. (2014). Migration of massive black hole binaries in self-gravitating accretion discs: Retrograde versus prograde. Monthly Notices of the Royal Astronomical Society, 439(4), 3476-3489. doi:10.1093/mnras/stu194.


Cite as: https://hdl.handle.net/11858/00-001M-0000-001A-232A-7
Abstract
We study the interplay between mass transfer, accretion and gravitational torques onto a black hole binary migrating in a self-gravitating, retrograde circumbinary disc. A direct comparison with an identical prograde disc shows that: (i) because of the absence of resonances, the cavity size is a factor a(1+e) smaller for retrograde discs; (ii) nonetheless the shrinkage of a circular binary semi--major axis, a, is identical in both cases; (iii) a circular binary in a retrograde disc remains circular while eccentric binaries grow more eccentric. For non-circular binaries, we measure the orbital decay rates and the eccentricity growth rates to be exponential as long as the binary orbits in the plane of its disc. Additionally, for these co-planar systems, we find that interaction (~ non--zero torque) stems only from the cavity edge plus a(1+e) in the disc, i.e. for dynamical purposes, the disc can be treated as a annulus of small radial extent. We find that simple 'dust' models in which the binary- disc interaction is purely gravitational can account for all main numerical results, both for prograde and retrograde discs. Furthermore, we discuss the possibility of an instability occurring for highly eccentric binaries causing it to leave the disc plane, secularly tilt and converge to a prograde system. Our results suggest that there are two stable configurations for binaries in self-gravitating discs: the special circular retrograde case and an eccentric (e~ 0.6) prograde configuration as a stable attractor.