Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case

MPG-Autoren
/persons/resource/persons127862

Buonanno,  Alessandra
Institut d’Astrophysique de Paris (GReCO, FRE 2435 du CNRS);
Theoretical Astrophysics, California Institute of Technology, Pasadena;
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

gr-qc_0205122.pdf
(Preprint), 2MB

PhysRevD.67.pdf
(beliebiger Volltext), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Buonanno, A., Chen, Y., & Vallisneri, M. (2003). Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case. Physical Review D, 67: 024016. doi:10.1103/PhysRevD.67.024016.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0018-FEDE-1
Zusammenfassung
We investigate the problem of detecting gravitational waves from binaries of nonspinning black holes with masses m = 5--20 Msun, moving on quasicircular orbits, which are arguably the most promising sources for first-generation ground-based detectors. We analyze and compare all the currently available post--Newtonian approximations for the relativistic two-body dynamics; for these binaries, different approximations predict different waveforms. We then construct examples of detection template families that embed all the approximate models, and that could be used to detect the true gravitational-wave signal (but not to characterize accurately its physical parameters). We estimate that the fitting factor for our detection families is >~0.95 (corresponding to an event-rate loss <~15%) and we estimate that the discretization of the template family, for ~10^4 templates, increases the loss to <~20%. Erratum-ibid.D74:029903,2006