Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Statistical and systematic errors for gravitational-wave inspiral signals: A principal component analysis

MPG-Autoren
/persons/resource/persons4364

Ohme,  Frank
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons26313

Nielsen,  Alex B.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons41853

Keppel,  Drew
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons104901

Lundgren,  Andrew
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1304.7017.pdf
(Preprint), 2MB

PRD88_042002.pdf
(beliebiger Volltext), 762KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ohme, F., Nielsen, A. B., Keppel, D., & Lundgren, A. (2013). Statistical and systematic errors for gravitational-wave inspiral signals: A principal component analysis. Physical Review D, 88(4): 042002. doi:10.1103/PhysRevD.88.042002.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0015-1AE5-7
Zusammenfassung
Identifying the source parameters from a gravitational-wave measurement alone is limited by our ability to discriminate signals from different sources and the accuracy of the waveform family employed in the search. Here we address both issues in the framework of an adapted coordinate system that allows for linear Fisher-matrix type calculations of waveform differences that are both accurate and computationally very efficient. We investigate statistical errors by using principal component analysis of the post-Newtonian (PN) expansion coefficients, which is well conditioned despite the Fisher matrix becoming ill conditioned for larger numbers of parameters. We identify which combinations of physical parameters are most effectively measured by gravitational-wave detectors for systems of neutron stars and black holes with aligned spin. We confirm the expectation that the dominant parameter of the inspiral waveform is the chirp mass. The next dominant parameter depends on a combination of the spin and the symmetric mass ratio. In addition, we can study the systematic effect of various spin contributions to the PN phasing within the same parametrization, showing that the inclusion of spin-orbit corrections up to next-to-leading order, but not necessarily of spin-spin contributions, is crucial for an accurate inspiral waveform model. This understanding of the waveform structure throughout the parameter space is important to set up an efficient search strategy and correctly interpret future gravitational-wave observations.