Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-quality multi-GeV electron bunches via cyclotron autoresonance

MPG-Autoren
/persons/resource/persons37681

Galow,  Benjamin Joachim
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons37921

Li,  Jiang-Xing
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons30970

Salamin,  Yousef I.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;
Department of Physics, American University of Sharjah, POB 26666, Sharjah, United Arab Emirates;

/persons/resource/persons30565

Harman,  Zoltan
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;
ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt, Germany;

/persons/resource/persons30659

Keitel,  Christoph H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1307.1814.pdf
(Preprint), 562KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Galow, B. J., Li, J.-X., Salamin, Y. I., Harman, Z., & Keitel, C. H. (2013). High-quality multi-GeV electron bunches via cyclotron autoresonance. Physical Review Special Topics-Accelerators and Beams, 16(8): 081302, pp. 1-6. doi:10.1103/PhysRevSTAB.16.081302.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-4FC7-8
Zusammenfassung
Autoresonance laser acceleration of electrons is theoretically investigated using circularly polarized focused Gaussian pulses. Many-particle simulations demonstrate feasibility of creating over 10-GeV electron bunches of ultra-high quality (relative energy spread of order 10^-4), suitable for fundamental high-energy particle physics research. The laser peak intensities and axial magnetic field strengths required are up to about 10^18 W/cm^2 (peak power ~10 PW) and 60 T, respectively. Gains exceeding 100 GeV are shown to be possible when weakly focused pulses from a 200-PW laser facility are used.