Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Motion processing in area V4 revealed with adaptation: Tetrode recordings in the awake, behaving macaque

MPG-Autoren
/persons/resource/persons84007

Keliris,  GA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84972

Smirnakis,  SM
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84260

Tolias,  AS
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Keliris, G., Smirnakis, S., Logothetis, N., & Tolias, A. (2004). Motion processing in area V4 revealed with adaptation: Tetrode recordings in the awake, behaving macaque. Poster presented at 34th Annual Meeting of the Society for Neuroscience (Neuroscience 2004), San Diego, CA, USA.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-D7BF-F
Zusammenfassung
The ability to detect motion in our environment is a crucial function of the visual system. Motion processing is usually studied by comparing the activity elicited by various motion stimuli relative to a baseline (“no-movement”) condition. However, during natural vision the sensory input is not broken into a series of discrete presentations that are simply switched on and off. By using a motion adaptation paradigm we studied how stimulation history influences the directional selectivity of single neurons in area V4. We found that V4 neurons which classically would be thought as non-directionally selective can in fact acquire directional selectivity after adaptation. We recorded from area V4 of two monkeys using tetrodes and characterized the directional tuning properties of single units using drifting coherent random dot patterns. In agreement with previous studies we find that the majority of area V4 neurons are weakly tuned to the direction of motion when their properties are characterized using the classical stimulation paradigm. The same neurons though, express stronger directional tuning if previously adapted to a moving stimulus for a period of one second. To quantify the amount of directional information present in the activity of V4 neurons we used a Bayesian population decoding method to predict the direction of motion of the stimulus trial by trial using the activity of a population of neurons in a four hundred millisecond window. The average test error dropped significantly when computed after adaptation. It is important to characterize the properties of neuronal circuits under adaptation to better understand the mechanisms of natural vision.