English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

MTBE decomposition in a reactive distillation column

MPS-Authors
/persons/resource/persons86439

Qi,  Zhiwen
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
State Key Lab. of Chem. Eng., School of Chem. Eng., East China Univ. of Science and Technology, Shanghai , China;

/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

/persons/resource/persons86489

Stein,  E.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86497

Sundmacher,  Kai
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Qi, Z., Kienle, A., Stein, E., Mohl, K. D., Tuchlenski, A., & Sundmacher, K. (2004). MTBE decomposition in a reactive distillation column. Chemical Engineering Research and Design, 82, 185-191. doi:10.1205/026387604772992756.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-9EB7-9
Abstract
MTBE decomposition in reactive distillation columns is investigated based on numerical simulations. Special emphasis is on the undesired side reactions. Quasi-homogeneous as well as heterogeneous column models are applied for a packed column. In the latter, the multi-component intra-particle mass transport phenomena are accounted for. Continuation methods are used to study the influence of the design and operating parameters in order to determine optimal conditions. One finding is that the catalyst holdup should be very low in order to fully convert MTBE with high selectivity into the desired products isobutene and methanol. The results from the heterogeneous model illustrate the role of mass transport inside the catalyst particles, especially at larger size and higher pressure. © 2004 Institution of Chemical Engineers. [accessed 2014 January 10th]