Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spherically symmetric gravitating shell as a reparametrization invariant system

MPG-Autoren

Hajicek,  P.
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

330970.pdf
(Preprint), 299KB

PRD.57.936.pdf
(beliebiger Volltext), 227KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hajicek, P. (1998). Spherically symmetric gravitating shell as a reparametrization invariant system. Physical Review D, 57(2), 936-953.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-5FF7-C
Zusammenfassung
The subject of this paper are spherically symmetric thin shells made of barotropic ideal fluid and moving under the influence of their own gravitational field as well as that of a central black hole; the cosmological constant is assumed to be zero. The general super-Hamiltonian derived in a previous paper is rewritten for this spherically symmetric special case. The dependence of the resulting action on the gravitational variables is trivialized by a transformation due to Kucha\v{r}. The resulting variational principle depends only on shell variables, is reparametrization invariant, and includes both first- and second-class constraints. Several equivalent forms of the constrained system are written down. Exclusion of the second-class constraints leads to a super-Hamiltonian which appears to overlap with that by Ansoldi et al. in a quarter of the phase space. As Kucha\v{r}' variables are singular at the horizons of both Schwarzschild spacetimes inside and outside the shell, the dynamics is first well-defined only inside of 16 disjoint sectors. The 16 sectors are, however, shown to be contained in a single, connected symplectic manifold and the constraints are extended to this manifold by continuity. Poisson bracket between no two independent spacetime coordinates of the shell vanish at any intersection of two horizons.