日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter

MPS-Authors
/persons/resource/persons20696

Rendall,  Alan D.
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

0701034.pdf
(プレプリント), 787KB

付随資料 (公開)
There is no public supplementary material available
引用

Dafermos, M., & Rendall, A. D. (2016). Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter. Communications on Pure and Applied Mathematics, 69(5), 815-908. doi:10.1002/cpa.21628.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-5FB0-C
要旨
This paper addresses strong cosmic censorship for spacetimes with self-gravitating collisionless matter, evolving from surface-symmetric compact initial data. The global dynamics exhibit qualitatively different features according to the sign of the curvature $k$ of the symmetric surfaces and the cosmological constant $\Lambda$. With a suitable formulation, the question of strong cosmic censorship is settled in the affirmative if $\Lambda=0$ or $k\le0$, $\Lambda>0$. In the case $\Lambda>0$, $k=1$, we give a detailed geometric characterization of possible "boundary" components of spacetime; the remaining obstruction to showing strong cosmic censorship in this case has to do with the possible formation of extremal Schwarzschild-de Sitter-type black holes. In the special case that the initial symmetric surfaces are all expanding, strong cosmic censorship is shown in the past for all $k,\Lambda$. Finally, our results also lead to a geometric characterization of the future boundary of black hole interiors for the collapse of asymptotically flat data: in particular, in the case of small perturbations of Schwarzschild data, it is shown that these solutions do not exhibit Cauchy horizons emanating from $i^+$ with strictly positive limiting area radius.