English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Asymptotic structure of symmetry-reduced general relativity

MPS-Authors

Schmidt,  Bernd G.
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ashtekar, A., Bicak, J., & Schmidt, B. G. (1997). Asymptotic structure of symmetry-reduced general relativity. Physical Review D, 55(2), 669-686.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-5AC8-9
Abstract
Gravitational waves with a space-translation Killing field are considered. Because of the symmetry, the four-dimensional Einstein vacuum equations are equivalent to the three-dimensional Einstein equations with certain matter sources. This interplay between four- and three-dimensional general relativity can be exploited effectively to analyze issues pertaining to four dimensions in terms of the three-dimensional structures. An example is provided by the asymptotic structure at null infinity: While these space-times fail to be asymptotically flat in four dimensions, they can admit a regular completion at null infinity in three dimensions. This completion is used to analyze the asymptotic symmetries, introduce the analogue of the four-dimensional Bondi energy momentum, and write down a flux formula. The analysis is also of interest from a purely three-dimensional perspective because it pertains to a diffeomorphism-invariant three-dimensional field theory with local degrees of freedom, i.e., to a midisuperspace. Furthermore, because of certain peculiarities of three dimensions, the description of null infinity has a number of features that are quite surprising because they do not arise in the Bondi-Penrose description in four dimensions.