Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Numerical evolution of dynamic 3D black holes: Extracting waves.

MPG-Autoren

Camarda,  Karen
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Seidel,  Edward
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

9709075v1.pdf
(Preprint), 219KB

Phys.Rev.D.57.6.pdf
(Verlagsversion), 119KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Camarda, K., & Seidel, E. (1998). Numerical evolution of dynamic 3D black holes: Extracting waves. Physical Review D, 57(6), R3204-R3208. doi:10.1103/PhysRevD.57.R3204.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-5962-8
Zusammenfassung
We consider the numerical evolution of dynamic black hole initial data sets with a full 3D, nonlinear evolution code. These data sets consist of single black holes distorted by strong gravitational waves, and mimic the late stages of coalescing black holes. Through comparison with results from well established axisymmetric codes, we show that these dynamic black holes can be accurately evolved. In particular, we show that with present computational resources and techniques, the process of excitation and ringdown of the black hole can be evolved, and one can now extract accurately the gravitational waves emitted from the 3D Cartesian metric functions, even though they may be buried in the metric at levels on the order of $10^{-3}$ and below. Waveforms for both the $\ell=2$ and the much more difficult $\ell=4$ modes are computed and compared with axisymmetric calculations. In addition to exploring the physics of distorted black hole data sets, and showing the extent to which the waves can be accurately extracted, these results also provide important testbeds for all fully nonlinear numerical codes designed to evolve black hole spacetimes in 3D, whether they use singularity avoiding slicings, apparent horizon boundary conditions, or other evolution methods.