Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients

MPG-Autoren

Chassande-Mottin,  Eric
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Dhurandhar,  Sanjeev
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2790.pdf
(Verlagsversion), 973KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chassande-Mottin, E., & Dhurandhar, S. (2001). Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients. Physical Review D, 63: 042004, pp. 042004.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-56BC-7
Zusammenfassung
It is known by the experience gained from the gravitational wave detector prototypes that the interferometric output signal will be corrupted by a significant amount of non-Gaussian noise, a large part of it being essentially composed of long-term sinusoids with a slowly varying envelope (such as violin resonances in the suspensions, or main power harmonics) and short-term ringdown noise (which may emanate from servo control systems, electronics in a nonlinear state, etc.). Since non-Gaussian noise components make the detection and estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering techniques (LMS methods) is proposed to separate and extract them from the stationary and Gaussian background noise. The strength of the method is that it does not require any precise model on the observed data: the signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and simplicity of this method make it useful for data preparation and for the understanding of the first interferometric data. We present the detailed structure of the algorithm and its application to both simulated data and real data from the LIGO 40 m prototype.