English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Non-perturbative 3d Lorentzian Quantum Gravity

MPS-Authors

Loll,  Renate
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

3358.pdf
(Preprint), 413KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ambjörn, J., Jurkiewicz, J., & Loll, R. (2001). Non-perturbative 3d Lorentzian Quantum Gravity. Physical Review D, 64: 044011.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-565B-0
Abstract
We have recently introduced a discrete model of Lorentzian quantum gravity, given as a regularized non-perturbative state sum over simplicial Lorentzian space-times, each possessing a unique Wick rotation to Euclidean signature. We investigate here the phase structure of the Wick-rotated path integral in three dimensions with the aid of computer simulations. After fine-tuning the cosmological constant to its critical value, we find a whole range of the gravitational coupling constant $k_0$ for which the functional integral is dominated by non-degenerate three-dimensional space-times. We therefore have a situation in which a well-defined ground state of extended geometry is generated dynamically from a non-perturbative state sum of fluctuating geometries. Remarkably, its macroscopic scaling properties resemble those of a semi-classical spherical universe. Measurements so far indicate that $k_0$ defines an overall scale in this extended phase, without affecting the physics of the continuum limit. These findings provide further evidence that discrete {it Lorentzian} gravity is a promising candidate for a non-trivial theory of quantum gravity