Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Symmetry without symmetry: Numerical simulation of axisymmetric systems using Cartesian grids.

MPG-Autoren

Alcubierre,  Miguel
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Brandt,  Steven
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Brügmann,  Bernd
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Holz,  Daniel
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Seidel,  Edward
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Takahashi,  Ryoji
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Int.Journ.Mod.Phys.D.10.3.pdf
(Verlagsversion), 374KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Alcubierre, M., Brandt, S., Brügmann, B., Holz, D., Seidel, E., Takahashi, R., et al. (2001). Symmetry without symmetry: Numerical simulation of axisymmetric systems using Cartesian grids. International Journal of Modern Physics D, 10(3), 273-289. doi:10.1142/S0218271801000834.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-559C-A
Zusammenfassung
We present a new technique for the numerical simulation of axisymmetric systems. This technique avoids the coordinate singularities which often arise when cylindrical or polar-spherical coordinate finite difference grids are used, particularly in simulating tenser partial differential equations like those of 3 + 1 numerical relativity. For a system axisymmetric about the r axis, the basic idea is to use a three-dimensional Cartesian (x,y,z) coordinate grid which covers (say) the y = 0 plane, but is only one finite-difference-molecule-width thick in the y direction. The field variables in the central y = 0 grid plane can be updated using normal (x, y, z)-coordinate finite differencing, while those in the y not equal 0 grid planes can be computed from those in the central plane by using the axisymmetry assumption and interpolation. We demonstrate the effectiveness of the approach on a set of fully nonlinear test computations in 3 + 1 numerical general relativity, involving both black holes and collapsing gravitational waves.