Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dynamical non-axisymmetric instabilities in rotating relativistic stars

MPG-Autoren

Baiotti,  Luca
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20670

Rezzolla,  Luciano
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

cqg7_12_s12.pdf
(Verlagsversion), 286KB

0705.1826v1.pdf
(Preprint), 291KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Baiotti, L., Manca, G. M., Rezzolla, L., & De Pietri, R. (2007). Dynamical non-axisymmetric instabilities in rotating relativistic stars. Classical and Quantum Gravity, S171-S186. Retrieved from http://www.iop.org/EJ/abstract/-search=22898408.3/0264-9381/24/12/S12.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-495E-4
Zusammenfassung
We present new results on dynamical instabilities in rapidly rotating neutron-stars. In particular, using numerical simulations in full General Relativity, we analyse the effects that the stellar compactness has on the threshold for the onset of the dynamical bar-mode instability, as well as on the appearance of other dynamical instabilities. By using an extrapolation technique developed and tested in our previous study [1], we explicitly determine the threshold for a wide range of compactnesses using four sequences of models of constant baryonic mass comprising a total of 59 stellar models. Our calculation of the threshold is in good agreement with the Newtonian prediction and improves the previous post-Newtonian estimates. In addition, we find that for stars with sufficiently large mass and compactness, the m=3 deformation is the fastest growing one. For all of the models considered, the non-axisymmetric instability is suppressed on a dynamical timescale with an m=1 deformation dominating the final stages of the instability. These results, together with those presented in [1], suggest that an m=1 deformation represents a general and late-time feature of non-axisymmetric dynamical instabilities both in full General Relativity and in Newtonian gravity.