Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nanoscale structure of poly(ethylene glycol) hybrid block copolymers containing amphiphilic β-strand peptide sequences

MPG-Autoren
/persons/resource/persons48660

Rösler,  A.
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48195

Klok,  Harm-Anton
MPI for Polymer Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rösler, A., Klok, H.-A., Hamley, I. W., Castelletto, V., & Mykhaylyk, O. O. (2003). Nanoscale structure of poly(ethylene glycol) hybrid block copolymers containing amphiphilic β-strand peptide sequences. Biomacromolecules, 4(4), 859-863.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-61C5-6
Zusammenfassung
This paper discusses the solid state and melt nanoscale structure of a series of novel poly(ethylene glycol) (PEG) hybrid di- and triblock copolymers, which contain amphiphilic β-strand peptide sequences. The block copolymers have been prepared via solid-phase synthesis, affording perfectly monodisperse peptide segments with a precisely defined α-amino acid sequence. Attenuated total reflection Fourier transform infrared spectroscopy and X-ray scattering experiments indicate that the self-assembly properties of the peptide sequences are retained upon conjugation to PEG and mediate the formation of an ordered superstructure consisting of alternating PEG layers and peptide domains with an highly organized antiparallel β-sheet structure. The results suggest that combination of biological structural motifs with synthetic polymers may be a versatile strategy for the development of novel self-assembled materials with complex internal structures and the potential to interface with biology.