Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A source-free integration method for black hole perturbations and self-force computation: Radial fall

MPG-Autoren
/persons/resource/persons41563

Aoudia,  Sofiane
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1008.2507.pdf
(Preprint), 416KB

PRD83_064029.pdf
(beliebiger Volltext), 963KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Aoudia, S., & Spallicci, A. D. A. M. (2011). A source-free integration method for black hole perturbations and self-force computation: Radial fall. Physical Review D, 83(6): 064029. doi:10.1103/PhysRevD.83.064029.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-08B5-3
Zusammenfassung
Perturbations of Schwarzschild-Droste black holes in the Regge-Wheeler gauge benefit from the availability of a wave equation and from the gauge invariance of the wave function, but lack smoothness. Nevertheless, the even perturbations belong to the C\textsuperscript{0} continuity class, if the wave function and its derivatives satisfy specific conditions on the discontinuities, known as jump conditions, at the particle position. These conditions suggest a new way for dealing with finite element integration in time domain. The forward time value in the upper node of the $(t, r^*$) grid cell is obtained by the linear combination of the three preceding node values and of analytic expressions based on the jump conditions. The numerical integration does not deal directly with the source term, the associated singularities and the potential. This amounts to an indirect integration of the wave equation. The known wave forms at infinity are recovered and the wave function at the particle position is shown. In this series of papers, the radial trajectory is dealt with first, being this method of integration applicable to generic orbits of EMRI (Extreme Mass Ratio Inspiral).