English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Calcium dependence of the rate of exocytosis in a synaptic terminal

Heidelberger, R., Heinemann, C., Neher, E., & Matthews, G. (1994). Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature, 371(6497), 513-515. doi:10.1038/371513a0.

Item is

Files

show Files
hide Files
:
371513a0.pdf (Publisher version), 989KB
 
File Permalink:
-
Name:
371513a0.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Heidelberger, R.1, Author           
Heinemann, C.1, Author           
Neher, E.1, Author           
Matthews, G., Author
Affiliations:
1Department of Membrane Biophysics, MPI for biophysical chemistry, Max Planck Society, ou_578579              

Content

show
hide
Free keywords: -
 Abstract: RAPID calcium-dependent exocytosis underlies neurotransmitter release from nerve terminals. Despite the fundamental importance of this process, neither the relationship between presynaptic intra-cellular calcium ion concentration ([Ca2+]i) and rate of exocytosis, nor the maximal rate of secretion is known quantitatively. To provide this information, we have used flash photolysis of caged Ca2+ to elevate [Ca2+]i rapidly and uniformly in synaptic terminals, while measuring membrane capacitance as an index of exocytosis and monitoring [Ca2+]i with a Ca2+-indicator dye. When [Ca2+]i was abruptly increased to >10 µM, capacitance rose at a rate that increased steeply with [Ca2+]i. The steepness suggested that at least four calcium ions must bind to activate synaptic vesicle fusion. Half-saturation was at 194 µM, and the maximal rate constant was 2,000–3,000 s–1. A given synaptic vesicle can exocytose with high probability within a few hundred microseconds, if [Ca2+]i rises above lOOµM. These properties provide for the extremely rapid signalling required for neuronal communication.

Details

show
hide
Language(s): eng - English
 Dates: 1994-10-06
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/371513a0
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
  Abbreviation : Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 371 (6497) Sequence Number: - Start / End Page: 513 - 515 Identifier: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238