de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection

Jaranowski, P., Królak, A., & Schutz, B. F. (1998). Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection. Physical Review D, 58(6): 063001. doi:10.1103/PhysRevD.58.063001.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-739D-5 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-73A0-C
Genre: Journal Article

Files

show Files
hide Files
:
60238.pdf (Publisher version), 611KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Jaranowski, Piotr1, Author
Królak, Andrzej1, Author
Schutz, Bernard F.2, Author              
Affiliations:
1External Organizations, escidoc:persistent22              
2Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, Golm, DE, escidoc:24013              

Content

show
hide
Free keywords: -
 Abstract: We present a theoretical background for the data analysis of the gravitational-wave signals from spinning neutron stars for Earth-based laser interferometric detectors. We introduce a detailed model of the signal including both the frequency and the amplitude modulations. We include the effects of the intrinsic frequency changes and the modulation of the frequency at the detector due to the Earth motion. We estimate the effects of the star's proper motion and of relativistic corrections. Moreover we consider a signal consisting of two components corresponding to a frequency $f$ and twice that frequency. From the maximum likelihood principle we derive the detection statistics for the signal and we calculate the probability density function of the statistics. We obtain the data analysis procedure to detect the signal and to estimate its parameters. We show that for optimal detection of the amplitude modulated signal we need four linear filters instead of one linear filter needed for a constant amplitude signal. Searching for the doubled frequency signal increases further the number of linear filters by a factor of two. We indicate how the fast Fourier transform algorithm and resampling methods commonly proposed in the analysis of periodic signals can be used to calculate the detection statistics for our signal. We find that the probability density function of the detection statistics is determined by one parameter: the optimal signal-to-noise ratio. We study the signal-to-noise ratio by means of the Monte Carlo method for all long-arm interferometers that are currently under construction. We show how our analysis can be extended to perform a joint search for periodic signals by a network of detectors and we perform Monte Carlo study of the signal-to-noise ratio for a network of detectors.

Details

show
hide
Language(s):
 Dates: 1998-09-15
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 58 (6) Sequence Number: 063001 Start / End Page: - Identifier: ISSN: 0556-2821