日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Cellular hysteresis as a principle to maximize the efficacy of antibiotic therapy

Roemhild, R., Gokhale, C. S., Dirksen, P., Blake, C., Rosenstiel, P., Traulsen, A., Andersson, D. I., & Schulenburg, H. (2018). Cellular hysteresis as a principle to maximize the efficacy of antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America, 115(39), 9767-9772. doi:10.1073/pnas.1810004115.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0002-1BBF-A 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0004-CC07-F
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
1810004115.full.pdf (出版社版), 2MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0002-1BC1-6
ファイル名:
1810004115.full.pdf
説明:
-
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:
非表示:
URL:
Link (出版社版)
説明:
-
OA-Status:

作成者

表示:
非表示:
 作成者:
Roemhild, Roderich1, 著者           
Gokhale, Chaitanya S.2, 著者           
Dirksen, Philipp1, 著者           
Blake, Christopher, 著者
Rosenstiel, Philip, 著者
Traulsen, Arne3, 著者           
Andersson, Dan I., 著者
Schulenburg, Hinrich1, 著者           
所属:
1Max Planck Fellow Group Antibiotic Resistance Evolution, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_2600692              
2Research Group Theoretical Models of Eco-Evolutionary Dynamics, Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_2355692              
3Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_1445641              

内容説明

表示:
非表示:
キーワード: -
 要旨: Rapid evolution is central to the current antibiotic crisis. Sustainable treatments must thus take account of the bacteria’s potential for adaptation. We identified cellular hysteresis as a principle to constrain bacterial evolution. Cellular hysteresis is a persistent change in bacterial physiology, reminiscent of cellular memory, which is induced by one antibiotic and enhances susceptibility toward another antibiotic. Cellular hysteresis increases bacterial extinction in fast sequential treatments and reduces selection of resistance by favoring responses specific to the induced physiological effects. Fast changes between antibiotics are key, because they create the continuously high selection conditions that are difficult to counter by bacteria. Our study highlights how an understanding of evolutionary processes can help to outsmart human pathogens.Antibiotic resistance has become one of the most dramatic threats to global health. While novel treatment options are urgently required, most attempts focus on finding new antibiotic substances. However, their development is costly, and their efficacy is often compromised within short time periods due to the enormous potential of microorganisms for rapid adaptation. Here, we developed a strategy that uses the currently available antibiotics. Our strategy exploits cellular hysteresis, which is the long-lasting, transgenerational change in cellular physiology that is induced by one antibiotic and sensitizes bacteria to another subsequently administered antibiotic. Using evolution experiments, mathematical modeling, genomics, and functional genetic analysis, we demonstrate that sequential treatment protocols with high levels of cellular hysteresis constrain the evolving bacteria by (i) increasing extinction frequencies, (ii) reducing adaptation rates, and (iii) limiting emergence of multidrug resistance. Cellular hysteresis is most effective in fast sequential protocols, in which antibiotics are changed within 12 h or 24 h, in contrast to the less frequent changes in cycling protocols commonly implemented in hospitals. We found that cellular hysteresis imposes specific selective pressure on the bacteria that disfavors resistance mutations. Instead, if bacterial populations survive, hysteresis is countered in two distinct ways, either through a process related to antibiotic tolerance or a mechanism controlled by the previously uncharacterized two-component regulator CpxS. We conclude that cellular hysteresis can be harnessed to optimize antibiotic therapy, to achieve both enhanced bacterial elimination and reduced resistance evolution.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2018-06-102018-08-162018-09-122018
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1073/pnas.1810004115
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Proceedings of the National Academy of Sciences of the United States of America
  その他 : Proceedings of the National Academy of Sciences of the USA
  その他 : Proc. Acad. Sci. USA
  その他 : Proc. Acad. Sci. U.S.A.
  省略形 : PNAS
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Washington, D.C. : National Academy of Sciences
ページ: - 巻号: 115 (39) 通巻号: - 開始・終了ページ: 9767 - 9772 識別子(ISBN, ISSN, DOIなど): ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230