Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Fourier-domain modulations and delays of gravitational-wave signals

Marsat, S., & Baker, J. G. (in preparation). Fourier-domain modulations and delays of gravitational-wave signals.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1806.10734.pdf (Preprint), 3MB
Name:
1806.10734.pdf
Beschreibung:
File downloaded from arXiv at 2018-07-31 09:56
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Marsat, Sylvain1, Autor           
Baker, John G., Autor
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Inhalt

einblenden:
ausblenden:
Schlagwörter: General Relativity and Quantum Cosmology, gr-qc
 Zusammenfassung: We present a Fourier-domain approach to modulations and delays of gravitational wave signals, a problem which arises in two different contexts. For space-based detectors like LISA, the orbital motion of the detector introduces a time-dependency in the response of the detector, consisting of both a modulation and a varying delay. In the context of signals from precessing spinning binary systems, a useful tool for building models of the waveform consists in representing the signal as a time-dependent rotation of a quasi-non-precessing waveform. In both cases, being able to compute transfer functions for these effects directly in the Fourier domain may enable performance gains for data analysis applications by using fast frequency-domain waveforms. Our results generalize previous approaches based on the stationary phase approximation for inspiral signals, extending them by including delays and computing corrections beyond the leading order, while being applicable to the broader class of inspiral-merger-ringdown signals. In the LISA case, we find that a leading-order treatment is accurate for high-mass and low-mass signals that are chirping fast enough, with errors consistently reduced by the corrections we derived. By contrast, low-mass binary black holes, if far away from merger and slowly-chirping, cannot be handled by this formalism and we develop another approach for these systems. In the case of precessing binaries, we explore the merger-ringdown range for a handful of cases, using a simple model for the post-merger precession. We find that deviations from leading order can give large fractional errors, while affecting mainly subdominant modes and giving rise to a limited unfaithfulness in the full waveform. Including higher-order corrections consistently reduces the unfaithfulness, and we further develop an alternative approach to accurately represent post-merger features.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2018-06-27
 Publikationsstatus: Keine Angabe
 Seiten: 41 pages, 21 figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1806.10734
URI: http://arxiv.org/abs/1806.10734
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: