日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Force loading explains spatial sensing of ligands by cells

Oria, R., Wiegand, T., Escribano, J., Elosegui-Artola, A., Uriarte, J. J., Moreno-Pulido, C., Platzman, I., Delcanale, P., Albertazzi, L., Navajas, D., Trepat, X., García-Aznar, J. M., Cavalcanti-Adam, E. A., & Roca-Cusachs, P. (2017). Force loading explains spatial sensing of ligands by cells. Nature, 552, 219-224. doi:10.1038/nature24662.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Nature_552_2017_219.pdf (全文テキスト(全般)), 7MB
 
ファイルのパーマリンク:
-
ファイル名:
Nature_552_2017_219.pdf
説明:
-
OA-Status:
閲覧制限:
制限付き (Max Planck Institute for Medical Research, MHMF; )
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-
:
Nature_552_2017_219_Suppl.pdf (全文テキスト(全般)), 81KB
 
ファイルのパーマリンク:
-
ファイル名:
Nature_552_2017_219_Suppl.pdf
説明:
-
OA-Status:
閲覧制限:
制限付き (Max Planck Institute for Medical Research, MHMF; )
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:
非表示:
URL:
https://www.nature.com/articles/nature24662.pdf (全文テキスト(全般))
説明:
-
OA-Status:
説明:
-
OA-Status:
URL:
https://doi.org/10.1038/nature24662 (全文テキスト(全般))
説明:
-
OA-Status:

作成者

表示:
非表示:
 作成者:
Oria, Roger, 著者
Wiegand, Tina1, 2, 著者           
Escribano, Jorge, 著者
Elosegui-Artola, Alberto, 著者
Uriarte, Juan Jose, 著者
Moreno-Pulido, Cristian, 著者
Platzman, Ilia1, 2, 著者           
Delcanale, Pietro, 著者
Albertazzi, Lorenzo, 著者
Navajas, Daniel, 著者
Trepat, Xavier, 著者
García-Aznar, José Manual, 著者
Cavalcanti-Adam, Elisabetta Ada1, 2, 著者           
Roca-Cusachs, Pere, 著者
所属:
1Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society, ou_2364731              
2Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany, ou_persistent22              

内容説明

表示:
非表示:
キーワード: Biomaterials – cells, Biophysics, Focal adhesion, Mechanotransduction, Nanoparticles
 要旨: Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts1,2. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin–ligand bonds are separated by more than a few tens of nanometres3,4,5,6. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly3,7,8,9. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model10,11, in which individual integrin–ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2017-01-162017-10-132017-12-062017-12-14
 出版の状態: 出版
 ページ: 6
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1038/nature24662
URI: https://www.ncbi.nlm.nih.gov/pubmed/29211717
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Nature
  省略形 : Nature
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: London : Nature Publishing Group
ページ: - 巻号: 552 通巻号: - 開始・終了ページ: 219 - 224 識別子(ISBN, ISSN, DOIなど): ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238