English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Patch-clamp techniques for time-resolved capacitance measurements in single cells

Lindau, M., & Neher, E. (1988). Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflügers Archiv: European Journal of Physiology, 411(2), 137-146. doi:10.1007/BF00582306.

Item is

Files

show Files
hide Files
:
BF00582306.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
BF00582306.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Lindau, M., Author
Neher, E.1, Author           
Affiliations:
1Department of Membrane Biophysics, MPI for biophysical chemistry, Max Planck Society, ou_578579              

Content

show
hide
Free keywords: -
 Abstract: Two methods are described for estimation of passive cell parameters such as membrane capacitance, membrane conductance and access resistance in tight-seal whole cell recording. Both methods are restricted in their application to cases where the cell under study can be approximated by a simple three-component network with linear properties over some voltage range. One method, referred to as the time domain technique, requires only standard electrophysiological equipment and a computer. Parameters are derived from an analysis of capacitive transients during square wave stimulation. It is readily adaptable to wide variations in experimental parameters. Particurlarly, it is equally applicable to the “slow whole-cell” configuration (access resistance in the range 100 MΩ to 1 GΩ) and to normal whole-cell measurements (access resistance typically 10 MΩ). The other method applies a sine wave command signal to the cell and employs a lock-in amplifier to analyse the resulting current signal. Two modes of operating the lock-in amplifier are described. One mode provides an output signal directly proportional to small changes in capacitance at maximum resolution (1–10 fF). The other mode, in conjunction with a digital computer, supplies estimates of all passive cell parameters, as does the time domain technique, but with a large amount of data reduction performed by the lock-in amplifier itself. Due to the special hardware, however, this method is not as flexible as the time domain technique.

Details

show
hide
Language(s): eng - English
 Dates: 1988-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/BF00582306
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Pflügers Archiv: European Journal of Physiology
  Other : Pflügers Arch. Europ. J. Physiol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Heidelberg : Springer-Verlag
Pages: - Volume / Issue: 411 (2) Sequence Number: - Start / End Page: 137 - 146 Identifier: ISSN: 0031-6768
CoNE: https://pure.mpg.de/cone/journals/resource/954925432380