de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Effective-one-body waveforms for binary neutron stars using surrogate models

Lackey, B., Bernuzzi, S., Galley, C. R., Meidam, J., & Broeck, C. V. D. (2017). Effective-one-body waveforms for binary neutron stars using surrogate models. Physical Review D, 95: 104036. doi:10.1103/PhysRevD.95.104036.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002D-AC95-E Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002E-0816-8
Genre: Journal Article

Files

show Files
hide Files
:
1610.04742.pdf (Preprint), 9MB
Description:
File downloaded from arXiv at 2017-08-01 13:36
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PRD.95.104036.pdf (Publisher version), 8MB
 
File Permalink:
-
Description:
-
Visibility:
Restricted
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Lackey, Benjamin1, Author              
Bernuzzi, Sebastiano, Author
Galley, Chad R., Author
Meidam, Jeroen, Author
Broeck, Chris Van Den, Author
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:1933290              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc
 Abstract: Gravitational-wave observations of binary neutron star systems can provide information about the masses, spins, and structure of neutron stars. However, this requires accurate and computationally efficient waveform models that take <1s to evaluate for use in Bayesian parameter estimation codes that perform 10^7 - 10^8 waveform evaluations. We present a surrogate model of a nonspinning effective-one-body waveform model with l = 2, 3, and 4 tidal multipole moments that reproduces waveforms of binary neutron star numerical simulations up to merger. The surrogate is built from compact sets of effective-one-body waveform amplitude and phase data that each form a reduced basis. We find that 12 amplitude and 7 phase basis elements are sufficient to reconstruct any binary neutron star waveform with a starting frequency of 10Hz. The surrogate has maximum errors of 3.8% in amplitude (0.04% excluding the last 100M before merger) and 0.043 radians in phase. The version implemented in the LIGO Algorithm Library takes ~0.07s to evaluate for a starting frequency of 30Hz and ~0.8s for a starting frequency of 10Hz, resulting in a speed-up factor of ~10^3 - 10^4 relative to the original Matlab code. This allows parameter estimation codes to run in days to weeks rather than years, and we demonstrate this with a Nested Sampling run that recovers the masses and tidal parameters of a simulated binary neutron star system.

Details

show
hide
Language(s):
 Dates: 2016-10-152017
 Publication Status: Published in print
 Pages: 17 pages, 11 figures, submitted to PRD
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1610.04742
DOI: 10.1103/PhysRevD.95.104036
URI: http://arxiv.org/abs/1610.04742
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
  Other : Phys. Rev. D.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lancaster, Pa. : American Physical Society
Pages: - Volume / Issue: 95 Sequence Number: 104036 Start / End Page: - Identifier: ISSN: 0556-2821
CoNE: http://pubman.mpdl.mpg.de/cone/journals/resource/111088197762258