Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  From single cells and single columns to cortical networks: Dendritic excitability, coincidence detection and synaptic transmission in brain slices and brains

Sakmann, B. (2017). From single cells and single columns to cortical networks: Dendritic excitability, coincidence detection and synaptic transmission in brain slices and brains. Experimental Physiology, 102(5), 489-521. doi:10.1113/EP085776.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Sakmann-2017-Experimental_Physiology.pdf (Verlagsversion), 3MB
Name:
Sakmann-2017-Experimental_Physiology.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© 2017 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sakmann, Bert1, Autor           
Affiliations:
1Emeritus Group: Cortical Column in silico / Sakmann, MPI of Neurobiology, Max Planck Society, ou_1113549              

Inhalt

einblenden:
ausblenden:
Schlagwörter: NEOCORTICAL PYRAMIDAL NEURONS; SOMATOSENSORY BARREL CORTEX; RAT VIBRISSAL CORTEX; PROPAGATING ACTION-POTENTIALS; POSTERIOR MEDIAL THALAMUS; DISTAL APICAL DENDRITES; IN-VIVO; CALCIUM DYNAMICS; LAYER 2/3; PROJECTION COLUMNPhysiology;
 Zusammenfassung: Although patch pipettes were initially designed to record extracellularly the elementary current events from muscle and neuron membranes, the whole-cell and loose cell-attached recording configurations proved to be useful tools for examination of signalling within and between nerve cells. In this Paton Prize Lecture, I will initially summarize work on electrical signalling within single neurons, describing communication between the dendritic compartments, soma and nerve terminals via forward- and backward-propagating action potentials. The newly discovered dendritic excitability endows neurons with the capacity for coincidence detection of spatially separated subthreshold inputs. When these are occurring during a time window of tens of milliseconds, this information is broadcast to other cells by the initiation of bursts of action potentials (AP bursts). The occurrence of AP bursts critically impacts signalling between neurons that are controlled by target-cell-specific transmitter release mechanisms at downstream synapses even in different terminals of the same neuron. This can, in turn, induce mechanisms that underly synaptic plasticity when AP bursts occur within a short time window, both presynaptically in terminals and postsynaptically in dendrites. A fundamental question that arises from these findings is: what are the possible functions of active dendritic excitability with respect to network dynamics in the intact cortex of behaving animals?' To answer this question, I highlight in this review the functional and anatomical architectures of an average cortical column in the vibrissal (whisker) field of the somatosensory cortex (vS1), with an emphasis on the functions of layer 5 thick-tufted cells (L5tt) embedded in this structure. Sensory-evoked synaptic and action potential responses of these major cortical output neurons are compared with responses in the afferent pathway, viz. the neurons in primary somatosensory thalamus and in one of their efferent targets, the secondary somatosensory thalamus. Coincidence-detection mechanisms appear to be implemented in vivo as judged from the occurrence of AP bursts. Three-dimensional reconstructions of anatomical projections suggest that inputs of several combinations of thalamocortical projections and intra- and transcolumnar connections, specifically those from infragranular layers, could trigger active dendritic mechanisms that generate AP bursts. Finally, recordings from target cells of a column reveal the importance of AP bursts for signal transfer to these cells. The observations lead to the hypothesis that in vS1 cortex, the sensory afferent sensory code is transformed, at least in part, from a rate to an interval (burst) code that broadcasts the occurrence of whisker touch to different targets of L5tt cells. In addition, the occurrence of pre- and postsynaptic AP bursts may, in the long run, alter touch representation in cortex.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-05-01
 Publikationsstatus: Erschienen
 Seiten: 33
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000400359700001
DOI: 10.1113/EP085776
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Experimental Physiology
  Andere : Exp. Physiol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: published by John Wiley & Sons Ltd on behalf of The Physiological Society
Seiten: - Band / Heft: 102 (5) Artikelnummer: - Start- / Endseite: 489 - 521 Identifikator: ISSN: 0958-0670
CoNE: https://pure.mpg.de/cone/journals/resource/954927613928