English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Restructuring of epibacterial communities on fucus vesiculosus forma mytili in response to elevated pCO2 and increased temperature levels

Mensch, B., Neulinger, S. C., Graiff, A., Pansch, A., Künzel, S., Fischer, M. A., et al. (2016). Restructuring of epibacterial communities on fucus vesiculosus forma mytili in response to elevated pCO2 and increased temperature levels. Frontiers in Microbiology, 7: Article 434. doi:10.3389/fmicb.2016.00434.

Item is

Files

show Files
hide Files
:
fmicb-07-00434.pdf (Publisher version), 3MB
Name:
fmicb-07-00434.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Mensch, Birte, Author
Neulinger, Sven C., Author
Graiff, Angelika, Author
Pansch, Andreas, Author
Künzel, Sven1, Author           
Fischer, Martin A., Author
Schmitz, Ruth A., Author
Affiliations:
1Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_1445635              

Content

show
hide
Free keywords: 16S rDNA; Fucus vesiculosus forma mytili; epibacteria; global warming; mesocosm; metaorganism; ocean acidification; pCO2
 Abstract: Marine multicellular organisms in composition with their associated microbiota – representing metaorganisms – are confronted with constantly changing environmental conditions. In 2110, the seawater temperature is predicted to be increased by approximately 5 °C, and the atmospheric carbon dioxide partial pressure (pCO2) is expected to reach approximately 1,000 ppm. In order to assess the response of marine metaorganisms to global changes, e.g. by effects on host-microbe interactions, we evaluated the response of epibacterial communities associated with Fucus vesiculosus forma mytili (F. mytili) to future climate conditions. During an 11-week lasting mesocosm experiment on the island of Sylt (Germany) in spring 2014, North Sea F. mytili individuals were exposed to elevated pCO2 (1,000 ppm) and increased temperature levels (∆+5 °C). Both abiotic factors were tested for single and combined effects on the epibacterial community composition over time, with three replicates per treatment. The respective community structures of bacterial consortia associated to the surface of F. mytili were analyzed by Illumina MiSeq 16S rDNA amplicon sequencing after 0, 4, 8 and 11 weeks of treatment (in total 96 samples). The results demonstrated that the epibacterial community structure was strongly affected by temperature, but only weakly by elevated pCO2. No interaction effect of both factors was observed in the combined treatment. We identified several indicator operational taxonomic units (iOTUs) that were strongly influenced by the respective experimental factors. An OTU association network analysis revealed that relationships between OTUs were mainly governed by habitat. Overall, this study contributes to a better understanding of how epibacterial communities associated with F. mytili may adapt to future changes in seawater acidity and temperature, ultimately with potential consequences for host-microbe interactions.

Details

show
hide
Language(s): eng - English
 Dates: 2015-12-012016-03-172016-03-312016
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.3389/fmicb.2016.00434
BibTex Citekey: 10.3389/fmicb.2016.00434
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Frontiers in Microbiology
  Abbreviation : Front. Microbiol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lausanne : Frontiers Media
Pages: - Volume / Issue: 7 Sequence Number: Article 434 Start / End Page: - Identifier: ISSN: 1664-302X
CoNE: https://pure.mpg.de/cone/journals/resource/1664-302X