Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  In-liquid Electron Microscopy and Diffraction for real-time observation and structural analysis

Keskin, S. (2016). In-liquid Electron Microscopy and Diffraction for real-time observation and structural analysis (PhD Thesis, Universität Hamburg, Hamburg, 2016).

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Dissertation_Sercan Keskin.pdf (Verlagsversion), 10MB
Name:
Dissertation_Sercan Keskin.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2016
Copyright Info:
© S. Keskin
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://ediss.sub.uni-hamburg.de/volltexte/2016/8226/ (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Keskin, Sercan1, 2, Autor           
Affiliations:
1International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266714              
2Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Electron Microscopy, Structural Analysis, Diffraction, Microscopy, Microfabrication
 Zusammenfassung: One of the biggest challenges in life sciences is to investigate chemical and biological reactions as they occur under natural conditions with sufficient spatiotemporal resolution to fully reveal the structure-function correlation. As a more general aspect in science, the aim has been to watch atomic motions as they occur. In biochemistry, natural environment refers to solution. An ultimate method to be implemented for this purpose is lacking for electrons mainly due to the difficulties in sample preparation and probe source design.
In this thesis, we focused on improving sample preparation methods for conventional transmission electron microscopy (CTEM) and femtosecond electron diffraction (FED) in solution phase. Silicon based micro- and nanofabrication techniques are used to manufacture the current generation of nanofluidic cells and developed new methods to improve its effectiveness regarding the spatial resolution with electrons. This device is used for mainly two different systems with in-liquid TEM in this thesis work. We used a no-flow version of the nanofluidic cell first to investigate DNA hybridization dynamics in solution. Secondly, we imaged cancer cells in situ with TEM to investigate their morphology differentiation and oligonucleotide bound gold nanoparticle uptake for potential use in targeted drug delivery.
The behavior of the nanofluidic cell windows in high vacuum has been characterized for different window lateral dimensions using custom designed thin-film interferometer. We can measure the sample cell thickness interferometrically and associate it with the obtained spatial resolution in TEM. The obtained results have importance for developing more advanced nanofluidic cells for both real space imaging and diffraction with electrons.
The nanofluidic cell was used first time for electron diffraction from liquid water in the course of this thesis. We used a differential pressure method to control the thickness of the liquid layer in flow cell allowing in situ sample exchange.
The obtained results highlight the potential of the nanofluidic cell to study molecular dynamics in solution in femtosecond time scale with ultra-fast stroboscopic techniques.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 20162016-12-06
 Publikationsstatus: Online veröffentlicht
 Seiten: 143
 Ort, Verlag, Ausgabe: Hamburg : Universität Hamburg
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: Doktorarbeit

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: