de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science

Zevin, M., Coughlin, S., Bahaadini, S., Besler, E., Rohani, N., Allen, S., et al. (2017). Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science. Classical and Quantum Gravity, 34(6): 064003. doi:10.1088/1361-6382/aa5cea.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-002C-39F3-E Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-002E-8729-E
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1611.04596.pdf (Preprint), 10MB
Beschreibung:
File downloaded from arXiv at 2017-01-12 15:53
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
CQG_34_064003.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zevin, Michael, Autor
Coughlin, Scott, Autor
Bahaadini, Sara, Autor
Besler, Emre, Autor
Rohani, Neda, Autor
Allen, Sarah, Autor
Cabero, Miriam1, Autor
Crowston, Kevin, Autor
Katsaggelos, Aggelos, Autor
Larson, Shane, Autor
Lee, Tae Kyoung, Autor
Lintott, Chris, Autor
Littenberg, Tyson, Autor
Lundgren, Andrew2, Autor              
Oesterlund, Carsten, Autor
Smith, Joshua, Autor
Trouille, Laura, Autor
Kalogera, Vicky, Autor
Affiliations:
1AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, Hannover, DE, escidoc:24009              
2Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, escidoc:24011              

Inhalt

einblenden:
ausblenden:
Schlagwörter: General Relativity and Quantum Cosmology, gr-qc, Astrophysics, High Energy Astrophysical Phenomena, astro-ph.HE, Astrophysics, Instrumentation and Methods for Astrophysics, astro-ph.IM, Physics, Instrumentation and Detectors, physics.ins-det
 Zusammenfassung: (abridged for arXiv) With the first direct detection of gravitational waves, the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) has initiated a new field of astronomy by providing an alternate means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual classifier. The resulting classification and characterization should help LIGO scientists to identify causes of glitches and subsequently eliminate them from the data or the detector entirely, thereby improving the rate and accuracy of gravitational-wave observations. We demonstrate these methods using a small subset of data from LIGO's first observing run.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-11-142017
 Publikationsstatus: Im Druck publiziert
 Seiten: 27 pages, 11 figures, submitted to CQG
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1611.04596
URI: http://arxiv.org/abs/1611.04596
DOI: 10.1088/1361-6382/aa5cea
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Classical and Quantum Gravity
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 34 (6) Artikelnummer: 064003 Start- / Endseite: - Identifikator: -