de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Accelerating Optimization and Uncertainty Quantification of Nonlinear SMB Chromatography Using Reduced-Order Models

Zhang, Y., Feng, L., Seidel-Morgenstern, A., & Benner, P. (2017). Accelerating Optimization and Uncertainty Quantification of Nonlinear SMB Chromatography Using Reduced-Order Models. Computers & Chemical Engineering, 96, 237-247. doi:10.1016/j.compchemeng.2016.09.017.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002B-A29A-B Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002D-A59C-B
Genre: Journal Article

Files

show Files
hide Files
:
zhang_ams_2351807.pdf (Postprint), 470KB
 
File Permalink:
-
Description:
-
Visibility:
Private (embargoed till 2018-09-30)
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Zhang, Yongjin1, Author              
Feng, Lihong1, Author              
Seidel-Morgenstern, Andreas2, 3, Author              
Benner, Peter1, Author              
Affiliations:
1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, escidoc:1738141              
2Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, escidoc:1738150              
3Otto-von-Guericke-Universität Magdeburg, External Organizations, escidoc:1738156              

Content

show

Details

show
hide
Language(s):
 Dates: 2017
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1016/j.compchemeng.2016.09.017
Other: pubdata_escidoc:2351807
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Computers & Chemical Engineering
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 96 Sequence Number: - Start / End Page: 237 - 247 Identifier: -